Activation of Mono- and Di-nuclear Polyhydrides of Rhenium : **Protonation, Solvation, and Oxidation**

Joe D. Allison and Richard A. Walton"

Department of Chemistry, Purdue University, West L afa yette, Indiana, 47907 U.S.A.

Activation of the rhenium polyhydrides ReH₅(PPh₃)₂L (L = monodentate ligand) and Re₂H₈(PPh₃)₄ has been achieved through their protonation (using $H\overline{BF}_4$), the formation of solvento-complexes, and their oxidation to reactive paramagnetic cations, strategies which have led to a range of novel species, including $[ReH(NCMe)_{3}(PPh_{3})_{2}L]^{2+}$, $[Re_{2}H_{7}(PPh_{3})_{4}L]^{+}$, and $[Re_{2}H_{5}(PPh_{3})_{4}(CNBu^{T})_{2}]^{+}$ together with their **'1** 7-electron' paramagnetic congeners.

Rhenium polyhydride complexes have attracted renewed ReH₇(PX_{3})₂ to activate C-H bonds.^{3,4} Following our recent attention because of the reactivity of diolefins with studies on the thermal reactions of rhenium polyhydrides, 5^{-7} $R \in H_7(PX_3)_{2^{1,2}} (PX_3 =$ tertiary phosphine) and the ability of we have sought means of activating the less reactive poly-

Scheme 1. $X = Ph$; (i) HBF_4 , MeCN; (ii) $Ph_3C^+PF_6^-$, MeCN; (iii) $Ph_3C^+PF_6^-$, CH₂Cl₂; (iv) Bu^tNC, CH₂Cl₂, room temperature; (v) NOPF₆, acetone; (vi) Bu^tNC, CH₂Cl₂, $O^{\circ}C$; (viii) Zn, CH₂Cl₂.

hydrides $[ReH_5(PX_3)_2]$, where $L =$ monodentate ligand, and $\text{Re}_2\text{H}_8(\text{PX}_3)_4$] through their protonation, the formation of solvento-complexes, and their oxidation to paramagnetic cations.

The addition of HBF₄ to a slurry of $\text{ReH}_5(\text{PPh}_3)_2(\text{py})$ (py = C_5H_5N) in MeCN produces a yellow solution from which yellow crystals of [ReH(NCMe)₃(PPh₃)₂(py)] (BF₄)₂ (1), can be isolated in quantitative yield. Starting with $ReH_5(PPh_3)_2(cy)$ $(cy = C_6H_{11}NH_2)$, an analogous reaction gives [ReH(NCMe)₃- $(PPh₃)₂(cy)[BF₄)₂ (2)$. These ready protonation reactions are in sharp contrast to the usual sluggish thermal chemistry of the rhenium pentahydrides.^{5,6,8,9}

Extending this reaction with $HBF₄$ to the heptahydride $ReH_7(PPh_3)_2$ affords the analogous complex $[ReH(NCMe)_4$ - $(PPh₃)₂$ $(BF₄)₂$ (3),[†] which is isoelectronic with the recently prepared $[WH₂(NCMe)₃(PMe₂Ph)₃](BF₄)₂.¹⁰$

We have sought to check the generality of this reaction insofar as it might be used to enhance the reactivity of $\text{Re}_2(\mu\text{-H})_4$ -H,(PPh,), **(4)** (see Scheme I), a complex containing a formal Re-Re triple bond.^{11,12} Compound (4) reacts with HBF₄ in MeCN to give deep violet $[Re₂H₇(PPh₃)₄(NCMe)]BF₄ (5).$ Alternatively, this cation can be generated by the reaction of $Ph_3C^+PF_6^-$ with a suspension of **(4)** in MeCN, a procedure which gives a quantitative yield of $[Re₂H₇(PPh₃)₄(NCMe)]PF₆$ **(6).** \ddagger However, reaction of $Ph_3C^+PF_6^-$ with **(4)** in a *non-coordinating solvent (e.g. CH₂Cl₂)* leads to oxidation of the octahydride to the air-sensitive, paramagnetic, salt $[Re₂H₈$ - $(PPh_3)_4$ JPF₆ (7) .

The cyclic voltammogram (c.v.) of **(1)** in 0.2 **M** tetra-nbutylammonium hexafluorophosphate (TBAH)-CH₂Cl₂ consists of a reversible one-electron oxidation at an $E_{1/2}$ of $+1.03$ V and an irreversible two-electron reduction at -1.71 V *vs.* S.C.E. (standard calomel electrode); analogous c.v.s were obtained for **(2)** and **(3).** The oxidation corresponds to the process shown in equation (1). The peak current ratio $i_{\text{p},\text{a}}$: $i_{\text{p},\text{c}}$

$$
\begin{array}{c}\n- e \\
[ReH(NCMe)_3(PPh_3)_2L]^{2+} \rightarrow [ReH(NCMe)_3(PPh_3)_2L]^{3+} (1) \\
(8)\n\end{array}
$$

ca. = 1, and values of $i_{p,c}: v^{1/2}$ were constant for scan rates (v) $\frac{1}{2}$ from 50 to 400mV/s. Values of $E_{p,a} - E_{p,c}$ (90 mV at 200 mV/s from 50 to 400mV/s. Values of $E_{p,a} - E_{p,c}$ (90 mV at 200 mV/s for $L = py$) increased with increasing scan rates. These properties are consistent with a quasi-reversible electron transfer process. Bulk electrolysis at $+1.30$ V ($n = 1.0 \pm 0.1$) leads to violet $[ReH(NCMe)_3(PPh_3)_2L]^{3+}$ (8); reduction of this solution at $+0.70$ V regenerates yellow $[ReH(NCMe)₃$ - $(PPh_3)_2L]^{2+}.$

The C.V. of **(6)** exhibits two reversible one-electron oxidations with associated $E_{1/2}$ values of $+0.01$ and $+0.75$ V *vs.* S.C.E. The position of the oxidation at $+0.01$ V is indicative of the ease of oxidation of **(6);** its treatment with NOPF, in acetone leads to complete conversion into the paramagnetic $[Re₂H₇(PPh₃)₄(NCMe)[PF₆)₂ (9),$ a process which can be reversed by zinc metal.§

To test the enhanced reactivity of these new cationic species, we have carried out some preliminary reactions with t-butyl isocyanide. Refluxing a solution of **(1)** in EtOH with ButNC for 3 h leads to the stable rhenium(1) complex $[Re(CNBu^t)₄$ - $(PPh_3)_2$]BF₄, whereas addition of Bu^tNC to a solution of (6) in CH_2Cl_2 proceeds smoothly in 1 h at room temperature to give the mixed hydride-isocyanide $[Re_2H_7(PPh_3)_4(CNBu^t)]PF_6$ **(10).** The oxidation of an acetone solution of **(10)** with NOPF, gives a colour change from green to turquoise and produces $[Re₂H₇(PPh₃)₄(CNBu^t)[(PF₆)₂]$ (11). This paramagnetic salt reacts with additional Bu^tNC in $CH₂Cl₂$ to form $[Re_2H_5(PPh_3)_4(CNBu^t)_2]PF_6$ (12) and $[Re(CNBu^t)_4(PPh_3)_2]$ - PF_6 (in *ca.* 3:1 proportions by c.v.), demonstrating the enhanced reactivity of the electron-deficient dication.

⁻f Microanalytical data and spectroscopic properties for **(1)-(3)** are fully in accord with the proposed formulations, *e.g.,* for **[ReH(NCMe),(PPh,),(py)](BF,), 'H** n.m.r. (CDCI,) *6* - 4.2 \tilde{f}_1 , $J(\tilde{P}-H)$ 66.6 Hz, $\tilde{R}e-H$, \tilde{f}_2 , \tilde{f}_3 and 1.90 (each s, 2:1 intensity ratio, CH_sCN), and 7.60 (m, PPh₃ and C_sH_sN).

 \ddagger ¹H N.m.r. (CD₂Cl₂): δ -5.15 (br. s, Re-H), 1.15 (s, CH₃CN), and 7.10 (m, $PPh₃$).

³ The e.s.r. spectrum of this complex and those of **(7)** and **(S),** and other paramagnetic complexes described herein were recorded for dichloromethane glasses at -160° C. Full details will be provided at a later date.

In contrast to the very sluggish reaction between **(4)** and ButNC in refluxing tetrahydrofuran, leading eventually to a low yield of $[Re(CNBu^t)_4(PPh_3)_2]^+$, the salt $[Re_2H_8(PPh_3)_4]PF_6$ (7) reacts very rapidly with Bu^tNC (in *ca*. 30 s at 0° C) to afford the complex **(12)** as maroon prisms. To satisfy the effective atomic number rule we formulate this complex so as to contain a Re-Re triple bond.? The C.V. of **(12)** in 0.2 **^M TBAH-CH₂Cl₂** shows two one-electron oxidations $(E_{1/2}$ $+0.36$ and $+1.13$ V *vs.* S.C.E.). In acetone (12) is oxidized to $[Re₂H₅(PPh₃)₄(CNBu^t)₂](PF₆)₂$ (13) by NOPF₆, which upon reaction with Bu^tNC in CH_2Cl_2 produces $[Re(CNBu^t)₄$ - (PPh_{3}) ₂]PF₆ together with significant amounts of re-reduced **(12).** Having established that **(12)** is not reactive towards an excess of ButNC, it is clear that the reactive species is the electron-deficient salt **(13).** This was confirmed by the reaction of (13) with an excess of Bu^tNC in 0.2 M TBAH-CH₂Cl₂ in a c.v. cell at a potential of $+0.70$ V [thereby preventing reduction back to **(12)];** this led to the quantitative conversion of **(13) into** $[Re(CNBu^t)_4(PPh_3)_2]PF_6$ **.**

We thank the National Science Foundation for research support.

Received, 7th December 1982; Com. 1407

References

- 1 D. Baudry and M. Ephritikhine, J. *Chem. Soc., Chem. Commun.,* 1980, 249.
- 2 D. Baudry, M. Ephritikhine, and **H.** Felkin, J. *Organomet. Chern.,* 1982, **224,** 363.
- 3 D. Baudry, M. Ephritikhine, and **H.** Felkin, *J. Chem. Soc., Chem. Commun.,* 1980, 1243.
- 4 D. Baudry, M. Ephritikhine, and **H.** Felkin, J. *Chem.* Soc., *Chem. Commun.,* 1982, *606.*
- 5 J. D. Allison, C. J. Cameron, R. E. Wild, and R. **A.** Walton, *J. Organomet. Chem.,* 1981, **213,** C62.
- *6* J. D. Allison, R. E. Wild, T. E. Wood, and R. **A.** Walton, *Inorg. Chem.,* 1982, **21,** 3540.
- 7 J. D. Allison and R. **A.** Walton, *Inorg. Chem.,* 1983, **22,** in the press.
- 8 **M.** Freni, D. Giusto, and V. Valenti, *J. Inorg. Nucl. Chem.,* 1965, **27,** 755.
- 9 J. Chatt and R. **S.** Coffey, J. *Chem. SOC. A,* 1969, 1963.
- 10 R. **H.** Crabtree and G. G. Hlatky, J. *Organomet. Chem.,* 1982, **238,** C21.
- 11 R. Bau, W. **E.** Carroll, and R. *G.* Teller, *J. Am. Chem. Sor.,* 1977, **99,** 3872.
- 12 **P.** Brant and R. **A.** Walton, *Inorg. Chem.,* 1978, **17,** 2674.

The Based upon its spectroscopic properties we believe that this complex contains an Re=Re bond supported by three μ **-H bridges, viz. i.r. (Nujol) 2095sh and 2040s cm⁻¹ (***i.e.* **terminal Bu⁺NC ligands only); ¹H n. J.** C. Huffman, and K. *G.* Caulton, J. *Am. Chem.* Soc., 1982,104, 2319.