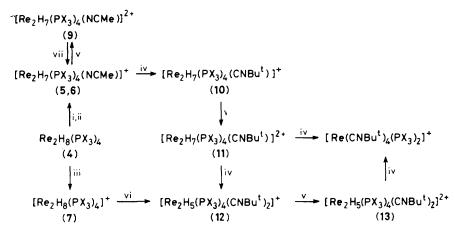
Activation of Mono- and Di-nuclear Polyhydrides of Rhenium: Protonation, Solvation, and Oxidation


Joe D. Allison and Richard A. Walton*

Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907 U.S.A.

Activation of the rhenium polyhydrides $\text{ReH}_5(\text{PPh}_3)_2\text{L}$ (L = monodentate ligand) and $\text{Re}_2\text{H}_8(\text{PPh}_3)_4$ has been achieved through their protonation (using HBF₄), the formation of solvento-complexes, and their oxidation to reactive paramagnetic cations, strategies which have led to a range of novel species, including [ReH(NCMe)_3(PPh_3)_2L]²⁺, [Re₂H₇(PPh_3)_4L]⁺, and [Re₂H₅(PPh_3)_4(CNBut)_2]⁺ together with their '17-electron' paramagnetic congeners.

Rhenium polyhydride complexes have attracted renewed attention because of the reactivity of diolefins with $ReH_7(PX_3)_2^{1,2}$ (PX₃ = tertiary phosphine) and the ability of

 $ReH_7(PX_3)_2$ to activate C-H bonds.^{3,4} Following our recent studies on the thermal reactions of rhenium polyhydrides,⁵⁻⁷ we have sought means of activating the less reactive poly-

Scheme 1. X = Ph; (i) HBF₄, MeCN; (ii) Ph₃C⁺PF₆⁻, MeCN; (iii) Ph₃C⁺PF₆⁻, CH₂Cl₂; (iv) Bu^tNC, CH₂Cl₂, room temperature; (v) NOPF₆, acetone; (vi) Bu^tNC, CH₂Cl₂, 0 °C; (vii) Zn, CH₂Cl₂.

hydrides $[\text{ReH}_5(\text{PX}_3)_2\text{L}$, where L = monodentate ligand, and $\text{Re}_2\text{H}_8(\text{PX}_3)_4$] through their protonation, the formation of solvento-complexes, and their oxidation to paramagnetic cations.

The addition of HBF₄ to a slurry of ReH₅(PPh₃)₂(py) (py = C_5H_5N) in MeCN produces a yellow solution from which yellow crystals of [ReH(NCMe)₃(PPh₃)₂(py)] (BF₄)₂ (1), can be isolated in quantitative yield. Starting with ReH₅(PPh₃)₂(cy) (cy = $C_6H_{11}NH_2$), an analogous reaction gives [ReH(NCMe)₃-(PPh₃)₂(cy)] (BF₄)₂ (2). These ready protonation reactions are in sharp contrast to the usual sluggish thermal chemistry of the rhenium pentahydrides.^{5,6,8,9}

$$[ReH(NCMe)_{3}(PPh_{3})_{2}(py)](BF_{4})_{2}$$
(1)
$$[ReH(NCMe)_{3}(PPh_{3})_{2}(cy)](BF_{4})_{2}$$
(2)
$$[ReH(NCMe)_{4}(PPh_{3})_{2}](BF_{4})_{2}$$
(3)

Extending this reaction with HBF₄ to the heptahydride ReH₇(PPh₃)₂ affords the analogous complex [ReH(NCMe)₄-(PPh₃)₂](BF₄)₂ (3),[†] which is isoelectronic with the recently prepared [WH₂(NCMe)₃(PMe₂Ph)₃](BF₄)₂.¹⁰

We have sought to check the generality of this reaction insofar as it might be used to enhance the reactivity of $\text{Re}_2(\mu-H)_4$ - $H_4(\text{PPh}_3)_4$ (4) (see Scheme 1), a complex containing a formal Re-Re triple bond.^{11,12} Compound (4) reacts with HBF₄ in MeCN to give deep violet $[\text{Re}_2H_7(\text{PPh}_3)_4(\text{NCMe})]\text{BF}_4$ (5). Alternatively, this cation can be generated by the reaction of Ph₃C+PF₆⁻ with a suspension of (4) in MeCN, a procedure which gives a quantitative yield of $[\text{Re}_2H_7(\text{PPh}_3)_4(\text{NCMe})]\text{PF}_6$ (6).[‡] However, reaction of Ph₃C+PF₆⁻ with (4) in a *non-coordinating solvent* (e.g. CH₂Cl₂) leads to oxidation of the octahydride to the air-sensitive, paramagnetic, salt $[\text{Re}_2H_8-(\text{PPh}_3)_4]\text{PF}_6$ (7). The cyclic voltammogram (c.v.) of (1) in 0.2 M tetra-nbutylammonium hexafluorophosphate (TBAH)–CH₂Cl₂ consists of a reversible one-electron oxidation at an $E_{1/2}$ of +1.03 V and an irreversible two-electron reduction at -1.71 V vs. S.C.E. (standard calomel electrode); analogous c.v.s were obtained for (2) and (3). The oxidation corresponds to the process shown in equation (1). The peak current ratio $i_{p,a}$: $i_{p,c}$

$$[\operatorname{ReH}(\operatorname{NCMe})_{3}(\operatorname{PPh}_{3})_{2}L]^{2+} \rightarrow [\operatorname{ReH}(\operatorname{NCMe})_{3}(\operatorname{PPh}_{3})_{2}L]^{3+} (1)$$
(8)

ca. = 1, and values of $i_{p,c}:\nu^{1/2}$ were constant for scan rates (v) from 50 to 400mV/s. Values of $E_{p,a} - E_{p,c}$ (90 mV at 200 mV/s for L = py) increased with increasing scan rates. These properties are consistent with a quasi-reversible electron transfer process. Bulk electrolysis at +1.30 V ($n = 1.0 \pm 0.1$) leads to violet [ReH(NCMe)₃(PPh₃)₂L]³⁺ (8); reduction of this solution at +0.70 V regenerates yellow [ReH(NCMe)₃-(PPh₃)₂L]²⁺.

The c.v. of (6) exhibits two reversible one-electron oxidations with associated $E_{1/2}$ values of +0.01 and +0.75 V vs. S.C.E. The position of the oxidation at +0.01 V is indicative of the ease of oxidation of (6); its treatment with NOPF₆ in acetone leads to complete conversion into the paramagnetic [Re₂H₇(PPh₃)₄(NCMe)](PF₆)₂ (9), a process which can be reversed by zinc metal.§

To test the enhanced reactivity of these new cationic species, we have carried out some preliminary reactions with t-butyl isocyanide. Refluxing a solution of (1) in EtOH with Bu^tNC for 3 h leads to the stable rhenium(I) complex $[Re(CNBu^t)_4-(PPh_3)_2]BF_4$, whereas addition of Bu^tNC to a solution of (6) in CH₂Cl₂ proceeds smoothly in 1 h at room temperature to give the mixed hydride-isocyanide $[Re_2H_7(PPh_3)_4(CNBu^t)]PF_6$ (10). The oxidation of an acetone solution of (10) with NOPF₆ gives a colour change from green to turquoise and produces $[Re_2H_7(PPh_3)_4(CNBu^t)](PF_6)_2$ (11). This paramagnetic salt reacts with additional Bu^tNC in CH₂Cl₂ to form $[Re_2H_5(PPh_3)_4(CNBu^t)_2]PF_6$ (in *ca.* 3:1 proportions by c.v.), demonstrating the enhanced reactivity of the electron-deficient dication.

[†] Microanalytical data and spectroscopic properties for (1)–(3) are fully in accord with the proposed formulations, *e.g.*, for [ReH(NCMe)₃(PPh₃)₂(py)](BF₄)₂ ¹H n.m.r. (CDCl₃) δ –4.2 [t, J(P-H) 66.6 Hz, Re-H], 2.45 and 1.90 (each s, 2:1 intensity ratio, CH₃CN), and 7.60 (m, PPh₃ and C₅H₅N).

 $[\]ddagger$ ¹H N.m.r. (CD₂Cl₂): δ – 5.15 (br. s, Re–H), 1.15 (s, CH₃CN), and 7.10 (m, PPh₃).

[§] The e.s.r. spectrum of this complex and those of (7) and (8), and other paramagnetic complexes described herein were recorded for dichloromethane glasses at -160 °C. Full details will be provided at a later date.

In contrast to the very sluggish reaction between (4) and Bu^tNC in refluxing tetrahydrofuran, leading eventually to a low yield of [Re(CNBu^t)₄(PPh₃)₂]⁺, the salt [Re₂H₈(PPh₃)₄]PF₆ (7) reacts very rapidly with $Bu^{t}NC$ (in ca. 30 s at 0 °C) to afford the complex (12) as maroon prisms. To satisfy the effective atomic number rule we formulate this complex so as to contain a Re-Re triple bond.¶ The c.v. of (12) in 0.2 M TBAH-CH₂Cl₂ shows two one-electron oxidations ($E_{1/2} =$ +0.36 and +1.13 V vs. S.C.E.). In acetone (12) is oxidized to $[Re_2H_5(PPh_3)_4(CNBu^{\dagger})_2](PF_6)_2$ (13) by NOPF₆, which upon reaction with Bu^tNC in CH₂Cl₂ produces [Re(CNBu^t)₄- $(PPh_3)_2$ PF_6 together with significant amounts of re-reduced (12). Having established that (12) is not reactive towards an excess of Bu^tNC, it is clear that the reactive species is the electron-deficient salt (13). This was confirmed by the reaction of (13) with an excess of Bu^tNC in 0.2 M TBAH-CH₂Cl₂ in a c.v. cell at a potential of +0.70 V [thereby preventing reduction back to (12)]; this led to the quantitative conversion of (13) into $[\text{Re}(\text{CNBu}^{\dagger})_4(\text{PPh}_3)_2]\text{PF}_6$.

We thank the National Science Foundation for research support.

Received, 7th December 1982; Com. 1407

References

- 1 D. Baudry and M. Ephritikhine, J. Chem. Soc., Chem. Commun., 1980, 249.
- 2 D. Baudry, M. Ephritikhine, and H. Felkin, J. Organomet. Chem., 1982, 224, 363.
- 3 D. Baudry, M. Ephritikhine, and H. Felkin, J. Chem. Soc., Chem. Commun., 1980, 1243.
- 4 D. Baudry, M. Ephritikhine, and H. Felkin, J. Chem. Soc., Chem. Commun., 1982, 606.
- 5 J. D. Allison, C. J. Cameron, R. E. Wild, and R. A. Walton, J. Organomet. Chem., 1981, 213, C62.
- 6 J. D. Allison, R. E. Wild, T. E. Wood, and R. A. Walton, Inorg. Chem., 1982, 21, 3540.
- 7 J. D. Allison and R. A. Walton, Inorg. Chem., 1983, 22, in the press.
- 8 M. Freni, D. Giusto, and V. Valenti, J. Inorg. Nucl. Chem., 1965, 27, 755.
- 9 J. Chatt and R. S. Coffey, J. Chem. Soc. A, 1969, 1963.
- 10 R. H. Crabtree and G. G. Hlatky, J. Organomet. Chem., 1982, 238, C21.
- 11 R. Bau, W. E. Carroll, and R. G. Teller, J. Am. Chem. Soc., 1977, 99, 3872.
- 12 P. Brant and R. A. Walton, Inorg. Chem., 1978, 17, 2674.

[¶] Based upon its spectroscopic properties we believe that this complex contains an Re=Re bond supported by three μ -H bridges, *viz.* i.r. (Nujol) 2095sh and 2040s cm⁻¹ (*i.e.* terminal Bu¹NC ligands only); ¹H n.m.r. (CD₂Cl₂, -40 °C) δ -5.5 [br. s, Re(μ -H)Re] and -6.65 p.p.m. [br. t, J(P-H) 49.5 Hz, Re-H]; ³¹P n.m.r. [(CD₂)₂CO, +22 °C] δ 29.9 p.p.m. (d, J(P-H) 49 Hz]; ³¹P {¹H</sup> h n.m.r. δ 29.9 p.p.m. (s). This structure is related to that found for [Re₂H₅(PMe₂Ph)₄{P(OCH₂)₃CEt}₂]⁺; see M. A. Green, J. C. Huffman, and K. G. Caulton, J. Am. Chem. Soc., 1982, **104**, 2319.